Species of the toxic Pfiesteria complex, and the importance of functional type in data interpretation.

نویسندگان

  • J M Burkholder
  • H B Glasgow
  • N J Deamer-Melia
  • J Springer
  • M W Parrow
  • C Zhang
  • P J Cancellieri
چکیده

We describe the two species of the toxic Pfiesteria complex to date (Pfiesteria piscicida and Pfiesteria shumwayae), their complex life cycles, and the characteristics required for inclusion within this complex. These species resemble P. piscicida Steidinger & Burkholder and also have a) strong attraction to fresh fish tissues and excreta, b) toxic activity stimulated by live fish, and c) production of toxin that can cause fish death and disease. Amoeboid stages were verified in 1992-1997 by our laboratory (various stages from toxic cultures) and that of K. Steidinger and co-workers (filose amoebae in nontoxic cultures), and in 2000 by H. Marshall and co-workers (various stages from toxic cultures), from clonal Pfiesteria spp. cultures, using species-specific polymerase chain reaction-based molecular probes with cross-confirmation by an independent specialist. Data were provided from tests of the hypothesis that Pfiesteriastrains differ in response to fresh fish mucus and excreta, algal prey, and inorganic nutrient (N, P) enrichment, depending on functional type or toxicity status. There are three functional types: TOX-A, in actively toxic, fish-killing mode; TOX-B, temporarily nontoxic, without access to live fish for days to weeks, but capable of toxic activity if fish are added; and NON-IND, noninducible with negligible toxicity in the presence of live fish. NON-IND Pfiesteria attained highest zoospore production on algal prey without or without inorganic nitrogen or inorganic phosphorus enrichment. TOX-B Pfiesteria was intermediate and TOX-A was lowest in zoospore production on algal prey with or without nutrients. TOX-A Pfiesteria spp. showed strong behavioral attraction to fresh fish mucus and excreta in short-term trials, with intermediate attraction of TOX-B zoospores and relatively low attraction of NON-IND cultures when normalized for cell density. The data for these clones indicated a potentially common predatory behavioral response, although differing in intensity distinct from a toxicity effect, in attack of fish prey. The data also demonstrated that functional types of Pfiesteria spp. show distinct differences in response to fish, algal prey, and inorganic nutrient enrichment. Collectively, the experiments indicate that NON-IND strains should not be used in research to gain insights about environmental controls on toxic strains of Pfiesteria spp.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Field ecology of toxic Pfiesteria complex species and a conservative analysis of their role in estuarine fish kills.

Within the past decade, toxic Pfiesteria outbreaks have been documented in poorly flushed, eutrophic areas of the largest and second largest estuaries on the U.S. mainland. Here we summarize a decadal field effort in fish kill assessment, encompassing kills related to Pfiesteria (49 major kills in North Carolina estuaries since 1991 and 4 in Maryland estuaries in 1997) and to other factors such...

متن کامل

Recognizing Toxic Species in Aquatic Habitats: A Potential Concern in Lake Management

The importance of distinguishing toxic and non-toxic algal species is becoming a more common problem for management decisions associated with various freshwater and estuarine habitats. An example is given where two dinoflagellates, originally unidentified as closely resembling the toxin producing Pfiesteria spp., have been compared to these species. In order to clarify any relationship to Pfies...

متن کامل

Demonstration of toxicity to fish and to mammalian cells by Pfiesteria species: comparison of assay methods and strains.

Toxicity and its detection in the dinoflagellate fish predators Pfiesteria piscicida and Pfiesteria shumwayae depend on the strain and the use of reliable assays. Two assays, standardized fish bioassays (SFBs) with juvenile fish and fish microassays (FMAs) with larval fish, were compared for their utility to detect toxic Pfiesteria. The comparison included strains with confirmed toxicity, negat...

متن کامل

Report from the NOAA workshops to standardize protocols for monitoring toxic Pfiesteria species and associated environmental conditions.

Long-term monitoring of water quality, fish health, and plankton communities in susceptible bodies of water is crucial to identify the environmental factors that contribute to outbreaks of toxic Pfiesteria complex (TPC) species. In the aftermath of the 1997 toxic Pfiesteria outbreaks in North Carolina and Maryland, federal and several state agencies agreed that there was a need to standardize m...

متن کامل

The standardized fish bioassay procedure for detecting and culturing actively toxic Pfiesteria, used by two reference laboratories for atlantic and gulf coast states.

In the absence of purified standards of toxins from Pfiesteria species, appropriately conducted fish bioassays are the "gold standard" that must be used to detect toxic strains of Pfiesteria spp. from natural estuarine water or sediment samples and to culture actively toxic Pfiesteria. In this article, we describe the standardized steps of our fish bioassay as an abbreviated term for a procedur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental Health Perspectives

دوره 109  شماره 

صفحات  -

تاریخ انتشار 2001